Aquarius/SAC-D and Soil Moisture

T. J. Jackson P. O'Neill

February 24, 2011

Aquarius/SAC-D and Soil Moisture

- + L-band dual polarization
- + Combined active and passive
- Coarse spatial resolution (~100 km)
- Reduced temporal frequency (7 days)
- + Exact repeat: 6 AM/PM
- Limited swath (3 fixed beams) (350 km)
- + SAC-D instruments
- + Launch June 2011 (no sooner)

Aquarius/SAC-D Instruments

Aquarius/SAC-D Science Instruments				
Instrument	Objective	Description	Resolution	Sour ce
Aquarius:	Sea Surface Salinity (SSS)	Integrat ed 1.413 GHz polarimetric radiometer, 1.26 GHz radar, 390 km swath	3 beams 76x94 km, 84x120 km, 96x156 km	NASA
MWR: Microwave Radiometer	Precipitation, wind speed, sea i ce concentration, water vapor	23.8 GHz and 37 GHz; Dual polarized; 390 km swath	40 km	CONAE
NIRST: New IR Sensor Technology	Hot spots (fires); Sea Surface Temperature	Bands: 3.8, 10.7 and 11.7 µm Swath: 180 km;	350 m eters	CONAE
HSC: High Sensitivity Camera	Urban lights; fires, Aurora	Bands: 450-900 nm; Swath: 700 km;	200-300 m	CONAE
DCS: Data Collection System	Environmental data collection	Band: 401.55 MHz uplink	2 contacts per day w 200 platforms	CONAE
ROSA: Radio Occultation Sounder for Atmosphere	Atmosphere temperature and humidity profiles	GPS occultation	Hor: 300 km Vert: 300 km	ASI (Italy)
CARMEN 1: (ICARE and SODAD)	ICARE: Effect of cosmic radiation on electronics; SODAD: Distribution micro- particles and space debris	ICARE: Three depleted Si and Si/Li detectors SODAD: Four SMOS sensors	E 256 channels S: 0.5 μ at 20 km/s sensitivity	CNES (France)

Incidence Angles 29°, 38°, 46°

Aquarius/SAC-D Microwave Footprints

Soil Moisture Retrieval Using Aquarius

- Approaches used with AMSR-E and SMAP L2/L3 Radiometer algorithms can be applied to Aquarius.
- The coarse spatial and temporal resolution may prove to be a limitations on the accuracy and utility of soil moisture from Aquarius.
- Opportunity to explore the use of coincident active and passive L-band observations. Cannot address the SMAP 10 km product issues.
- Availability of the MWR for LST.
- Need to address incidence angle differences of the Aquarius beams (and MWR).

Passive and Active Soil Moisture Algorithms

- Active microwave
 - No robust retrieval technique has been developed and validated for use with high resolution SAR data
 - Two decades of C-band (ERS, Radarsat, ...) and one decade of Lband (JERS, PALSAR)
 - Statistical and semi-empirical methods for specific sites/conditions, i.e. the Dubois model.
 - SMAP and SAOCOM are focusing on this problem.
 - Operational products have been developed using coarse resolution (50 km) C-band scatterometers
 - Temporal change technique.
 - Extended period of observations required to develop frequency specific calibration of each footprint!
 - Considered an index as opposed to actual soil moisture.

Passive and Active Soil Moisture Algorithms

- Passive and active microwave synergy
 - There have been a few very limited studies.
 - SMAP has this capability but the primary focus at the moment is on resolution enhancement.
 - Utilizing the radar data directly in the retrieval algorithm is under consideration.
 - Mixing and matching passive and active data from existing satellites as a means of simulating Aquarius may not be useful. (or worth the effort at this point).
 - AMSR-E/SMOS and ASCAT/QUIKSCAT: vegetation and roughness effects are very important and vary with frequencies and polarizations. Need concurrent observations.
 - SMOS and ALOS: issues with disparate scales need to be resolved. Need concurrent observations.

Aquarius Soil Moisture Algorithms

- Our approach will be to build from proven techniques and add in the capabilities of Aquarius/SAC-D
- Initial selection for this study:
 - Single Channel Algorithm (SCA)
 - Land Product Retrieval Algorithm (LPRM)

Aquarius/SAC-D Soil Moisture Retrieval

Product

- Three L-band observations
- Three options for LST
- Climatological or "real time" NDVI, maybe SMOS TAU

Aquarius/SAC-D Soil Moisture Retrieval Ver. 1

Potential of Aquarius/SAC-D Measurements in Soil

Aquarius/SAC-D Soil Moisture Retrieval Ver. ?

Aquarius Soil Moisture Validation

- Exploit existing resources (satellite/model/in situ)
 - GCOM-W, SMOS, SMAP
 - Argentina collaboration

Sparse and Dense In Situ Soil Moisture Networks (Examples)

DENSE: ARS Soil Moisture Validation Watersheds

AZ-WG OK-LW GA-LR ID-RC Land Cover Conditions in the Watersheds

Summary

- Aquarius/SAC-D provides opportunities to explore new approaches to soil moisture retrieval.
 - First space borne data that can be used to assess the synergy of L-band passive and active observations for improving remote sensing of soils and vegetation.
- Our approach will build from heritage satellite-based low frequency passive microwave algorithms
 - Two soil moisture algorithms that are currently being used with AMSR-E observations.
- These utilize a unique element of Aquarius/SAC-D, 1.4 and 36.5 GHz radiometers.
 - Information from the MWR 36.5 V GHz is used to derive land surface temperature (LST), which is then employed in computing emissivity.
 - The retrieved LST is another potential Aquarius/SAC-D product.
- These results will serve as a baseline for research on a combined passive-active soil moisture algorithm.
 - Improvements in corrections for roughness, vegetation, and transient water effects.

Collaboration

- In situ network data
- Alternative algorithms
- Calibration of the Aquarius radiometer and scatterometer using PLMR and PLIS
 - Funding
 - Timing
- Validation of the Aquarius soil moisture (and LST) products with a field campaign
 - Funding
 - Timing

MWR Acquisition Geometry

⁶th Aquarius/SAC-D Science Meeting, MWR L2 Retrieval Algorithms; S. Masuelli, C. Tauro, and L. Jones

6th Aquarius/SAC-D Science Meeting, MWR L2 Retrieval Algorithms; S. Masuelli, C. Tauro, and L. Jones