

SMAP Cal/Val Plan Overview

T. Jackson A. Colliander

February 25, 2011

Summary

- Broad overview of the the SMAP C/V Plan with a focus on soil moisture.
- Give you a better idea of what is needed and why we need it.
- Some details on our activities (Andreas)

SMAP Science Cal/Val Overview

- SMAP Mission Requirements for Cal/Val
 These define what we need to do in Cal/Val
- Objective and Approach
- Methodologies
- Field Experiments

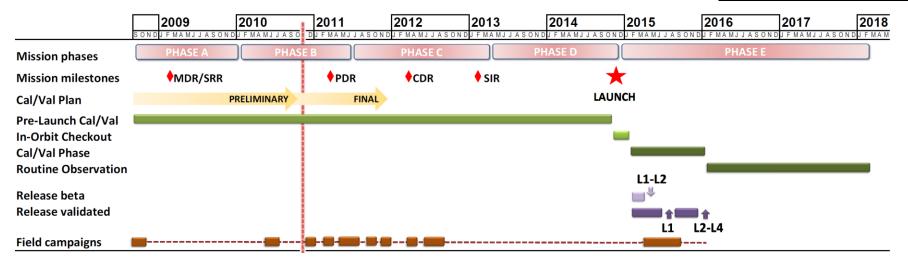
SMAP L1 Req. Impacting Cal/Val

Level 1 (Baseline) Science Requirements and Mission Success Criteria

Provide estimates of soil moisture in the top 5 cm of soil with an error of no greater than 0.04 m3/m3 volumetric (one sigma) at 10 km spatial resolution and 3-day average intervals over non-excluded regions.

Provide estimates of surface binary freeze/thaw state in the region north of 45N latitude, which includes the boreal forest zone, with a *classification accuracy of 80% at 3 km spatial resolution* and 2-day average intervals.

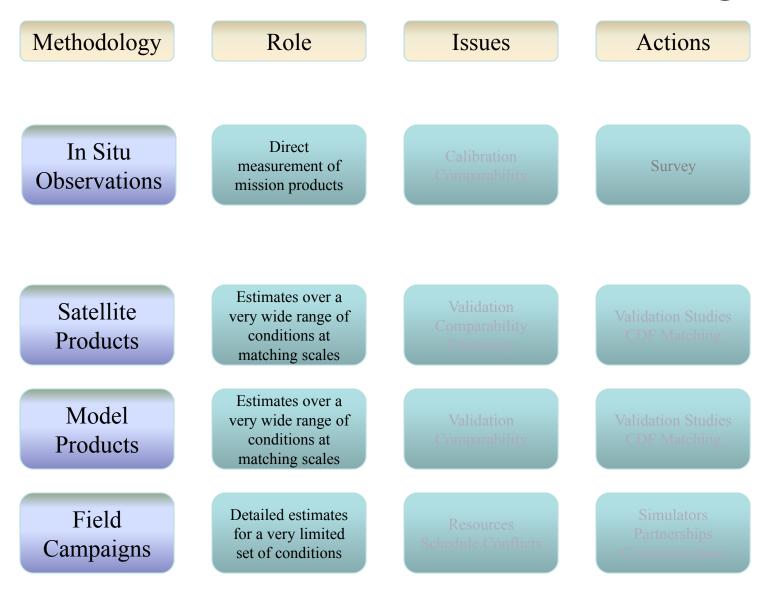
Conduct a calibration and validation program to verify data delivered meets the requirements.

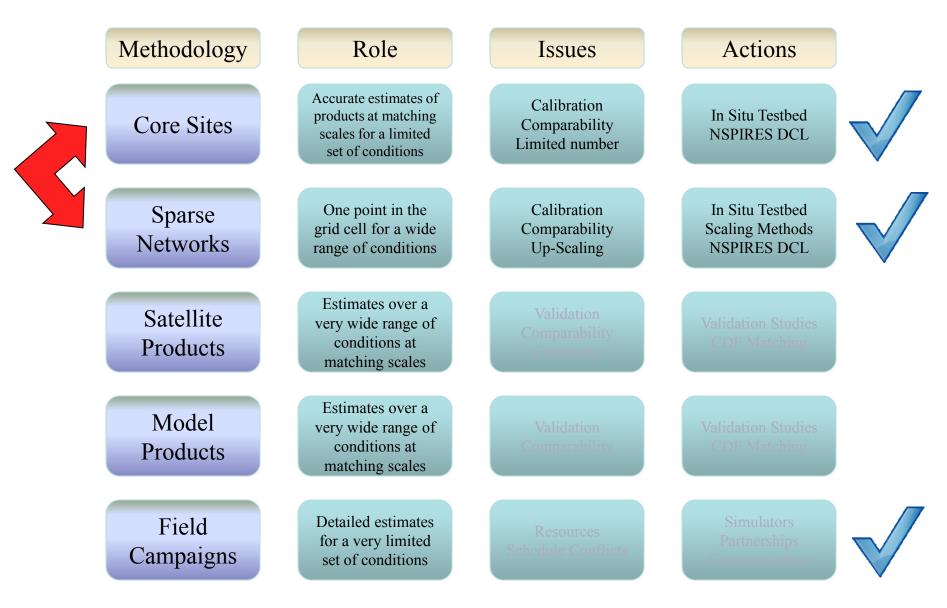

Threshold mission requirements are 0.06 m3/m3 and 70%

SMAP Science Cal/Val Overview

- SMAP Mission Requirements for Cal/Val
 - These define what we need to do in Cal/Val
 - In addition to the L1 requirements, there are Level 2 requirements for all mission products
 - Time line is another requirement on Cal/Val
- Objective and Approach
- Methodologies
- Field Experiments

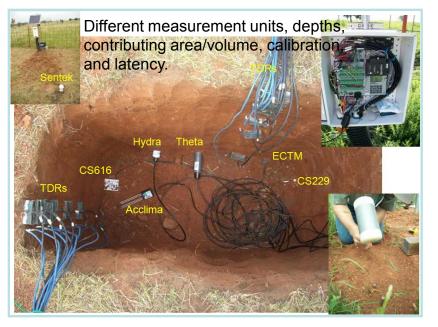
SMAP Cal/Val Objective and Approach

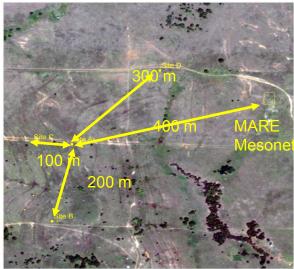

Objective: Calibrate and validate L1 through L4 algorithms and products
 relative to the mission requirements and schedule constraints. Focus here is on the L2-L4 Products



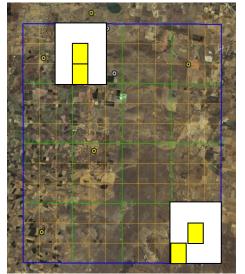
- Approach: Mission Phase Focus
 - Pre-Launch: validating that there are means in place to fulfill the mission objectives
 - Algorithm development (ATBD identified activities)
 - Infrastructure needed for post-launch
 - Post-Launch: validating that the science products meet their quantified requirements
 - Validation
 - Product Improvement

SMAP Science Cal/Val Overview


- SMAP Mission Requirements for Cal/Val
- Objective and Approach
- Methodologies
- Field Experiments



SMAP In Situ Sensor (ISST) Testbed


- There are no standards!
- *Objective*: Establish the comparability of data from available networks.
- Approach (Initial): ISST-Single location with representative soil moisture sensor technologies and installations
 - Compare and contrast response, calibration, representativeness, and dynamic range.
- Marena, OK site May 2010

SMAP Core Validation Sites/NSPIRES

- Soil moisture and Freeze-Thaw
- Objectives: Increase number of sites, improve data quality (standards), and formalize commitment

Yanco, Australia

- SMAP Radiometer Pixel
- SMAP Radar pixels
- SMAP Combined radiometer/radar soil moisture
- Existing stations
- New stations

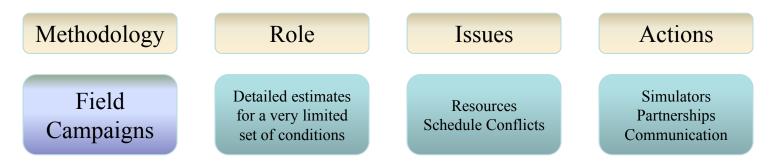

- Approach: NSPIRES Dear Colleague Letter (DCL) (No exchange of funds and allows international part.)
- Schedule: Closes March 1, 2011
- Also applies to sparse networks and ground-based SMAP simulators

SMAP Sparse Networks and Up-Scaling

- Advantage of operational networks is that the data are in public domain and provided in a timely manner.
- Almost all of these are sparse.
- Subject to the same calibration and comparability issues as Core Sites.
- *Objective*: Develop an up-scaling methodology.
- Approaches:
 - Triple co-location
 - Temporary networks (used in CanEx)
 - Others will be evaluated.
- Of particular value for L4 soil moisture because dense networks typically support surface products.
- White paper draft in review.

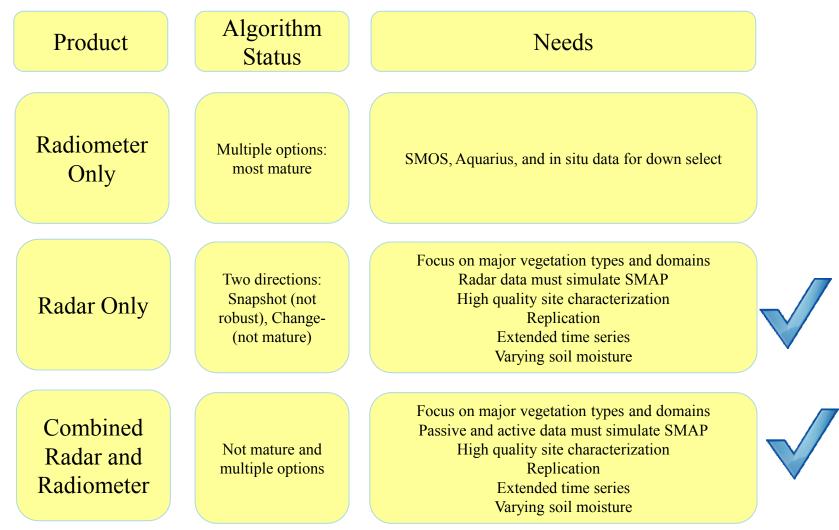
Methodology	Role	Issues	Actions	
Core Sites	Accurate estimates of products at matching scales for a limited set of conditions	Calibration Comparability Limited number	NSPIRES DCL In Situ Testbed	
Sparse Networks	One point in the grid cell for a wide range of conditions	Calibration Comparability Scaling	NSPIRES DCL In Situ Testbed Scaling Methods	
Satellite Products	Estimates over a very wide range of conditions at matching scales	Validation Comparability Continuity	Validation Studies CDF Matching	
Model Products	Estimates over a very wide range of conditions at matching scales	Validation Comparability	Validation Studies CDF Matching	
Field Campaigns	Detailed estimates for a very limited set of conditions	Resources Schedule Conflicts	Simulators Partnerships Communication	

SMAP Cal/Val and Satellite Products


Methodology	Role	Issues	Actions	
Core Sites	Accurate estimates of products at matching scales for a limited set of conditions l	Calibration Comparability Limited number	NSPIRES DCL In Situ Testbed	
Sparse Networks	One point in the grid cell for a wide range of conditions	Calibration Comparability Scaling	NSPIRES DCL In Situ Testbed Scaling Methods	
Satellite Products	Estimates over a very wide range of conditions at matching scales	Validation Comparability Continuity	Validation Studies CDF Matching	
Model Products	Estimates over a very wide range of conditions at matching scales	Validation Comparability	Validation Studies CDF Matching	
Field Campaigns	Detailed estimates for a very limited set of conditions	Resources Schedule Conflicts	Simulators Partnerships Communication	

SMAP Major Field Experiments

Year/ Quarter	1	2	3	4	International Collaboration Canada Australia
2008			SMAPVEX08		
2009				SMOS	
2010			SMAPEx-1 CanEx-SM	SMAPEx-2	SMAPVEX12 will focus on the most important algorithm development and validation issues before launch that were not addressed in the collaborative SMAPEx and CanEx campaigns
2011		Aquarius	SMAPEx-3	GCOM-W	
2012			SMAPVEX12	SAOCOM CanEx-FT	
2013				ALOS-2	
2014				SMAP	
2015	SMAPVEX15	SMAPVEX15	SMAPVEX15		


Satellite Launch in Red

Drivers for SMAP Pre-Launch Field Campaigns

- Specific algorithm needs; specific land cover types, more robust data sets
- Establishing the calibration and scaling of in situ resources
- Dress rehearsal for post launch campaign

SMAP Soil Moisture Pre-Launch Validation: Specific L2/L3 Algorithm Needs

SMAPEx Focus

- Algorithm Development
 - Focus on major vegetation types and domains
 - Passive and active data must simulate SMAP
 - High quality site characterization
 - Replication
 - Extended time series
 - Varying soil moisture
- Infrastructure
 - Calibration of in situ soil moisture
 - Scaling of in situ soil moisture
 - Demonstration of PLMR/PLIS contributions to SMAP L1 Cal/Val
- Aquarius?