Polarimetric L-Band Imaging Scatterometer Data Processing

Heath Yardley University of Adelaide Radar Research Centre

Overview

Radar Parameters

Imaging Geometry

- Imaging Algorithm
- Gamma Remote Sensing
 - Modular SAR Processor (MSP)
 - Motion Compensation (MoCom)

Calibration

- Polarimetric Active Radar Calibrators (PARCs)
- Triangular trihedrals

Radar Parameters

Frequency	1.26GHz
Power	25W
Maximum Duty Cycle	4%
Bandwidth	30MHz
Pulse Length	100ns-10us
Pulse Repetition Frequency Maximum	20kHz
Transmit Polarisation	Interleaved H/V
Receive Polarisation	Simultaneous H/V
Look Direction	Interleaved L/R
Antenna Type / Gain	2x2 Patch Array / 9dBi

- Good Accuracy
- Efficiency gained by using the Fast Fourier Transform
- Assumes two independent dimensions (Range-Doppler)
- Processes Range Dimension with a matched filter using Fast Convolution
- Processes Azimuth Dimension with a matched filter in Doppler domain

 $s_{rc}(\tau, \eta) = IFFT\{FFT\{s_{raw}(\tau, \eta)\} \times G(f_{\tau})\}$

- G is a filter matched to the transmit waveform usually with a window function applied
- FFT/IFFT are forward and reverse fast Fourier transforms
- \odot τ is range time
- \bigcirc η is azimuth time

Take Azimuth Fast Fourier Transform

 $S_{rd}(\tau, f_{\eta}) = FFT_{\eta}\{s_{rd}(\tau, \eta)\}$

Allows for block processing

Interpolate in range for each azimuth frequency

$$R_{rd}(f_{\eta}) = \frac{R_o}{D(f_{\eta}, V_r)} \quad D(f_{\eta}, V_r) = \sqrt{1 - \frac{\lambda^2 f_{\eta}^2}{4V_r^2}}$$

- $\$ λ is radar wavelength
- \mathbf{O} V_r is platform speed
- R_o is imaging range
- Usually use truncated Sinc function interpolation
- Sinc length 8-16

Matched filter in the azimuth dimension for each range

$$H_{az}(f_{\eta}) = exp\left\{j\frac{4\pi R_o D(f_{\eta}, V_r)f_o}{c}\right\}$$

- \bigcirc f_o is the radar frequency
- c is the speed of light
- Notice the filter changes for each range, R
- Dependence on platform dynamics

Complete processing with an azimuth inverse fast Fourier transform

 $s_{slc}(\tau,\eta) = IFFT_{\eta}\{S_{rd}(\tau,f_{\eta})\}$

Repeat process along the range compressed data sequence

Gamma Remote Sensing

- Modular SAR Processor (MSP)
 - Implements the Range-Doppler Algorithm
 - Each processing stage is executed on an intermediate binary file with an associated parameter file
 - All polarisation combinations and look directions are processed separately

Image Products

- Single Look Complex (SLC) 32bit floating point
- Multi Look Intensity (MLI) 32bit floating point
- Scaled raster 8bit integer

Gamma RS – SMAPex 1

Gamma RS – SMAPex 1

Gamma Remote Sensing

- Motion Compensation (MoCom)
 - Interpolates the range compressed data using navigation information from the platform
 - Corrects for deviations from the reference platform track
 - Corrects for mismatches in the data compared to that expected by the azimuth matched filter
 - Sharpens the image focus

SAR Calibration

- Scattering Matrix S
- System model (receiver voltage) L
- Variables $\psi_{t,}\psi_{r}$ are relative phase inside a range cell
- N is complex additive white Gausian noise
- Cross talk terms $\delta_1, \delta_2, \delta_3, \delta_4$
- Channel imbalance f_1, f_2
- Amplitude factors due to range to target and back as well as antenna pattern asymmetry - A_r, A_t
- Need to estimate scattering calibration matrix parameters
- This formulation includes cross coupling between the various polarisation combinations due to antenna imperfections and system leakage

$$S = \begin{bmatrix} s_{hh} & s_{hv} \\ s_{vh} & s_{vv} \end{bmatrix}$$

$$L = \begin{bmatrix} z_{hh} & z_{hv} \\ z_{vh} & z_{vv} \end{bmatrix} = R^H ST + N$$

$$R = A_r e^{j\psi_r} \begin{bmatrix} 1 & \delta_2 \\ \delta_1 & f_1 \end{bmatrix}$$

$$T = A_t e^{j\psi_t} \begin{bmatrix} 1 & \delta_3 \\ \delta_4 & f_2 \end{bmatrix}$$

Calibration – Point Targets

Polarimetric Active Radar Calibrators (PARCs)

- Fixed known Radar Cross Section A_1, A_2, A_3
- Combination of three gives response in all polarisation combinations
- Direct method for scattering calibration matrix parameters although not as simple as it appears

$$A_{i} = G_{e} \frac{G_{A}^{2} \lambda^{2}}{4\pi}, i = 1, 2, 3$$

$$S_{1} = A_{1} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$S_{2} = A_{2} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$S_{3} = A_{3} \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$$

Calibration – Point Targets

- Triangular Trihedral
 - Fixed known Radar Cross Section
 - Gives response in co-polarised channels only
 - Direct method for scattering calibration matrix parameters also non trivial

$$A_T = \frac{4\pi a^3}{3\lambda^2}$$
$$S_T = A_T \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

Calibration – Image Example

Summary

- Range-Doppler imaging algorithm focuses raw radar data
- Gamma RS is proprietary modular software implementing the range-Doppler algorithm
- Motion compensation must be applied for sharp imagery
- Calibration is a non trivial stage in producing useful backscatter measurements

